34 research outputs found

    Evolutionary Many-objective Optimization of Hybrid Electric Vehicle Control: From General Optimization to Preference Articulation

    Get PDF
    Many real-world optimization problems have more than three objectives, which has triggered increasing research interest in developing efficient and effective evolutionary algorithms for solving many-objective optimization problems. However, most many-objective evolutionary algorithms have only been evaluated on benchmark test functions and few applied to real-world optimization problems. To move a step forward, this paper presents a case study of solving a many-objective hybrid electric vehicle controller design problem using three state-of-the-art algorithms, namely, a decomposition based evolutionary algorithm (MOEA/D), a non-dominated sorting based genetic algorithm (NSGA-III), and a reference vector guided evolutionary algorithm (RVEA). We start with a typical setting aiming at approximating the Pareto front without introducing any user preferences. Based on the analyses of the approximated Pareto front, we introduce a preference articulation method and embed it in the three evolutionary algorithms for identifying solutions that the decision-maker prefers. Our experimental results demonstrate that by incorporating user preferences into many-objective evolutionary algorithms, we are not only able to gain deep insight into the trade-off relationships between the objectives, but also to achieve high-quality solutions reflecting the decision-maker’s preferences. In addition, our experimental results indicate that each of the three algorithms examined in this work has its unique advantages that can be exploited when applied to the optimization of real-world problems

    A Review: Prognostics and Health Management in Automotive and Aerospace

    Get PDF
    Prognostics and Health Management (PHM) attracts increasing interest of many researchers due to its potentially important applications in diverse disciplines and industries. In general, PHM systems use real-time and historical state information of subsystems and components of the operating systems to provide actionable information, enabling intelligent decision-making for improved performance, safety, reliability, and maintainability. Every year, a substantial number of papers in this area including theory and practical applications, appear in academic journals, conference proceedings and technical reports. This paper aims to summarize and review researches, developments and recent contributions in PHM for automotive- and aerospace industries. It can also be considered as the starting point for researchers and practitioners in general to assist them through PHM implementation and help them to accomplish their work more easily.Algorithms and the Foundations of Software technolog

    Optimizing the maintenance schedule for a vehicle fleet: a simulation-based case study

    Get PDF
    Vehicle fleets support a diverse array of functions and are increasing rapidly in the world of today. For a vehicle fleet, maintenance plays a critical role. In this article, an evolutionary algorithm is proposed to optimize the vehicle fleet maintenance schedule based on the predicted remaining useful lifetime (RUL) of vehicle components to reduce the costs of repairs, decrease maintenance downtime and make them safer for drivers. The multi-objective evolutionary algorithm (MOEA) is then enhanced to focus precisely on the preferred solutions. Moreover, stability is involved as another objective in the dynamic MOEA for handling the problem under changes in the environment. To implement the complete maintenance process, a simulator is developed that can define vehicles, predict the RUL of components and optimize the maintenance schedule in a rolling-horizon fashion. The results of the proposed MOEAs under different scenarios are reported and compared.NWO15465Algorithms and the Foundations of Software technolog

    Turbulent separated shear flow control by surface plasma actuator: experimental optimization by genetic algorithm approach

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00348-015-2107-3The potential benefits of active flow control are no more debated. Among many others applications, flow control provides an effective mean for manipulating turbulent separated flows. Here, a nonthermal surface plasma discharge (dielectric barrier discharge) is installed at the step corner of a backward-facing step (U0 = 15 m/s, Reh = 30,000, Re¿ = 1650). Wall pressure sensors are used to estimate the reattaching location downstream of the step (objective function #1) and also to measure the wall pressure fluctuation coefficients (objective function #2). An autonomous multi-variable optimization by genetic algorithm is implemented in an experiment for optimizing simultaneously the voltage amplitude, the burst frequency and the duty cycle of the high-voltage signal producing the surface plasma discharge. The single-objective optimization problems concern alternatively the minimization of the objective function #1 and the maximization of the objective function #2. The present paper demonstrates that when coupled with the plasma actuator and the wall pressure sensors, the genetic algorithm can find the optimum forcing conditions in only a few generations. At the end of the iterative search process, the minimum reattaching position is achieved by forcing the flow at the shear layer mode where a large spreading rate is obtained by increasing the periodicity of the vortex street and by enhancing the vortex pairing process. The objective function #2 is maximized for an actuation at half the shear layer mode. In this specific forcing mode, time-resolved PIV shows that the vortex pairing is reduced and that the strong fluctuations of the wall pressure coefficients result from the periodic passages of flow structures whose size corresponds to the height of the step model.Peer ReviewedPostprint (author's final draft

    A framework for evolutionary optimization with approximate fitness functions.

    No full text

    Reference vector based a posteriori preference articulation for evolutionary multiobjective optimization.

    No full text

    Adaptive encoding for aerodynamic shape optimization using evolution strategies

    No full text
    The evaluation of fluid dynamic properties of various different structures is a computationally very demanding process. This is of particular importance when population based evolutionary algorithms are used for the optimization of aerodynamic structures like wings or turbine blades. Besides choosing algorithms which only need few generations or function evaluations, it is important to reduce the number of object parameters as much as possible. This is usually done by restricting the optimization to certain attributes of the design which are seen as important. By doing so, the freedom for the optimization is restricted to areas of the design space where good solutions are expected. This can be problematic especially if the properties of the design and their interactions are not known sufficiently well like for example for transonic flow conditions. In order to be able to combine the conflicting constraints of a minimal set of parameters and the maximal degree of freedom, we propose an adaptive or growing representation for spline coded structures. In this way, the optimization is started with a simple representation with a minimal description length. The number of describing parameter is adapted during the optimization using a mutation operator working on the structure of the encoding. We compare this method with four different Evolution Strategies using a spline fitting problem as a test function. Of special interest are on the one hand the total number of fitness evaluations, which determine the computational resources necessary for an optimization and on the other hand the final quality of the match measured by the distance between a target curve and the generated spline

    On evolutionary optimization of large problems using small populations

    No full text
    Small populations are very desirable for reducing the required computational resources in evolutionary optimization of complex real-world problems. Unfortunately, the search performance of small populations often reduces dramatically in a large search space. To addresses this problem, a method to find an optimal search dimension for small populations is suggested in this paper. The basic idea is that the evolutionary algorithm starts with a small search dimension and then the search dimension is increased during the optimization. The search dimension will continue to increase if an increase in the search dimension improves the search performance. Otherwise, the search dimension will be decreased and then kept constant. Through empirical studies on a test problem with an infinite search dimension, we show that the proposed algorithm is able to find the search dimension that is the most efficient for the given population size. © Springer-Verlag Berlin Heidelberg 2005
    corecore